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A Study on the Optimum Scheme for Determination of Operation
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In an automatic combination weigher, the line feeders distribute the product to several weigh-

ing hoppers. The ability to supply appropriate amount of product to the weighing hoppers for

each combination operation is crucial for the overall performance. Determining the right dura-

tion of operating a line feeder to supply a given amount of product becomes very challenging

in case of products which are irregular in volume or specific gravity such as granular secondary

processed foods. In this research, several schemes were investigated to determine the best way for

a line feeder to approximate the next operating time in order to supply a set amount of irregu-

lar goods to the corresponding weighing hopper. Results obtained show that a weighted least

squares method (WLS) employing 10 data points is the most effective in determining the operat-

ing times of line feeders.
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1. Introduction

Weighing and packaging is a major concern in
any production line. An automatic combination
weigher is a fully automatic computer-controlled
scale whose function is to weigh accurately, effi-
ciently and reliably at high speed. In the radial
type, products are fed through a circular feeder
located at the centre to a number of weighing
channels. Each channel typically consists of a line
feeder, a preliminary (pool) hopper, a weighing
hopper and a memory hopper (optional). If a cer-
tain amount of products are collected in the pre-
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liminary hopper, both feeders stop and the pro-
ducts in the preliminary hopper are transferred to
the weighing hoppers where the weight is accura-
tely measured by a load cell. The calculation unit
then calculates the total weights of many different
combinations of weighing (or memory) hopper
contents and selects the best combination.

For example in a 10 channel weigher, for four
hoppers to accurately provide a total of 200 g (dis-
tributed equally), each line feeder should supply
close to 50 g to each corresponding weighing hop-
pers. The combination operation will then pick
four hoppers that together best total 200 g. Pro-
ducts from the selected hoppers are released to
the packaging machine via discharge chutes. New
product is then promptly fed into each of the em-
ptied hoppers, thus continuing the weighing op-
eration. Automatic combination weighers can be
found in many factories and packing houses that
supply packaged goods to supermarkets and other
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outlets. Almost any type of food product is suc-
cessfully handled by combination weighers ; crisps,
nuts, grains, sweets, frozen chips and many more.
A wide range of non-food products is also com-
fortably handled, from detergents and hardware
to pharmaceutical, amongst others.

During the last two decades vibratory convey-
ors have dominated the transport of products prior
to weighing to such an extent that it is rarely pos-
sible to replace them by any other technology.
They are particularly advantageous when indivi-
dual parts need to be separated from a group and
fed at a controlled rate into another piece of equip-
ment. Designing linear vibratory conveyors in in-
dustrial applications is based on already estab-
lished theory on the dynamics of a body on a vi-
brating plate (Winkler, 1978). The most promis-
ing design is the conveyor with inclined motion.
Factors that could affect the rigid body’s convey-
ing velocity are the angle of vibration, amplitude
of vibration, coefficient of friction, inclination of
the plate angle to the horizontal and the operat-
ing frequency. Because of the complicated inter-
actions between the vibrating trough and the par-
ticles, both glide and throw movements frequently
appear within one oscillation cycle (Lim, 1997).
Hongler and Figour (1989) concluded that the
motion of a part on the track can be either of the
sliding type (S-regime), of the hopping type (H-
regime), or a combination of both (HS-regime).

While many studies are restricted to the sliding
regime, it is actually the hopping regime where
the conveying rate is highest (Winkler, 1979).
The conveying rate in the chaotic region is rough-
ly independent of external variations in parame-
ters. Han and Lee (2002) identified this regime
through numerical simulation and experimental
analysis. In general the transport rate is difficult
to calculate in a purely analytical manner. Con-
veying the products at the highest velocity will
however not provide the optimum performance
of automatic combination weighers unless appro-
priate amount of the product is supplied to the
hoppers for the combination operation. Previous
models like those manufactured by Ishida Europe
use some form of level (volume) sensors on input
chute to control the product flow to the line

feeders. This means that the line feeders cannot
be operated consecutively with the in feed con-
veyor and product control is not restricted to each
individual channel. The level sensor could be in-
stalled in or before the preliminary hopper as done
in some models by Anritsu Corporation but this
means using as many sensors as the number of
channels. In other weighers in the market, the line
feeders are operated in a preset fixed time though
the exact transport rate is difficult to determine.

Clearly these methods cannot deliver accurate
weighments in case of products that are irregular
in volume and/or specific gravity as commonly
encountered. This paper suggests a method of bas-
ing the time on analyzing the relationship be-
tween previous operating times and the amount
of products delivered to the hoppers using the
least squares method (LSM). Various schemes
are investigated and compared with the fixed time
method.

2. Least Squares Method

2.1 Formulation of the least squares prob-
lem
In its simplest form the least squares method
will be illustrated in this section. Suppose that the
relationship between two groups of variables x
and y can be best described by the equation of a
straight line :

y=ax+ao (1)

One could arbitrarily choose two sets of x and y
quantities and solve for the two unknown para-
meters @; and ap. Yet, the line constructed by the
computed a; and ao parameters might not pass
through some sets of x and y (Fig. 1), since the
information associated with those points were not
used in computing @; and ao. The reasons for all
the points not being located on one straight line
could be:

(1) Errors in data set.
(2) Inaccurate model for the data set.

The least squares criterion requires that the
sum of the squares of the deviations separating
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Fig. 1 Straight line fitting of data

the data points from the curve will be minimum.
These deviations are simply the difference be-
tween the estimated values of y (hereafter denoted
by $) from Eq. (1) and the actual measured val-
ues of y(y,). In other words, the deviations are
the errors associated with the value of y predicted
by the model and the actual measured data. The
sum of the squares of the offsets is used instead
of the offset absolute values because this allows
the residuals to be treated as a continuous differ-
entiable quantity. The least squares method ap-
proach will use information associated with all of
the x and y sets, to determine the “best” estimates
of a1 and ao. In the least squares sense, the error
can be expressed as ;

E=§]lei
I v 2)
:rgl[yr_j}rjzzg[yr_ (CZIXr+aO> ]2

where E is the total error and e, is the error at
a particular data point.

Minimization of the error with respect to a;
and @ results in the following equations which
are called the normal equations for the least
squares problem.

gi ::12[yr_ (awxr+ao) ][ —x-]=0 (3)
g—aEOZgZ[yr—(mxrkao)][—ﬂ:o (4)

Egs. (3) and (4) can be solved for the unknown
parameters @1 and a..
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The a; and g values computed from Egs. (5) and
(6) represent the characteristics of a straight line
which would “best” describe the x and y sets of
values.

The least squares problem can be formulated in
matrix notation as:

{v}=[x}{A} (7)
where ;
V1 x1 1
= o=l | (o)
B2 xnv 1

The equations presented by matrix Eq. (7) are in
general a set of inconsistent and overdetermined
equations. Inconsistent, since it is not usually pos-
sible to find { A} that would satisfy all the in-
dividual equations of Eq. (7), and overdetermin-
ed, since the number of equations is larger than
the number of unknowns. The least squares solu-
tion of Eq. (7) is:

(XIH{Y}=[X]"[X{A} (8)
and solving for unknown vector { A} yields ;
{A}=(X]"[X])[X]{Y} (9)

provided that ([ X ]7[X]) ! exists. In case the in-
verse does not exist, one could then use numerical
techniques to solve for the vector { A}.

In cases where matrices A, X, and Y are com-
plex valued, the Eqgs. (8) and (9). The hermitian
operator, H, is the complex conjugate transpose.
Hence, the unknown vector { A} is given by :

{AY=([XT"[X])'[X]1"{Y} (10)

In general the relationship of Eq. (1) could be
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in the form of:
y=anx™+an-1x"""'+ -+ ax+a (11)

A set of equations similar to the formulation above
could be written and solved to obtain the least
squares estimation of unknown parameters aw,
an-1, ***, a1, ao. Further, the least squares method
stated above could easily be extended to problems
involving more than one independent variable.
For example, z could be expressed in terms of x

and y:
z=ay+ax+ao (12)

The corresponding normal equations for the least
squares problem can be solved for the unknown
parameters @, ai, and ao. The computed values
az, a1, and ap represent the characteristics of a
plane which would “best” describe the x, y, and
z sets of values. The above theory and formula-
tion could be expanded to least squares estima-
tion of a surface and eventually to higher order
dimensions.

2.2 Weighted least squares method

One of the common assumptions underlying
most process modeling methods, including linear
and nonlinear least squares regression, is that each
data point provides equally precise information
about the deterministic part of the total process
variation. In other words, the standard deviation
of the error term is constant over all values of the
predictor or explanatory variables. This assump-
tion, however, clearly does not hold, even appro-
ximately, in many modeling application. In situa-
tions when it may not be reasonable to assume
that every observation should be treated equally,
weighted least squares (WLS) can often be used
to maximize the efficiency of parameter estima-
tion. This is done by attempting to give each data
point its proper amount of influence over the para-
meter estimates. A procedure that treats all of the
data equally would give less precisely measured
points more influence than they should have and
would give highly precise points too little influ-
ence. If a nonconstant variance is seen in a plot
of residuals versus fits, then the WLS should be
considered.

Individual equations in matrix Eq. (7) could be
multiplied by a weighting factor to give that equa-
tion more or less weight in the computation. The
weighting factors could be presented in form of
a diagonal (N X N) matrix, W. The diagonal
element in row 7 represents the weighting factor
corresponding to equation ¢z, and the off diagonal
terms are all zero. Matrix W is premultiplied to
both sides of Eq. (7).

[WHY}=[WI[X]{A} (13)
where :
w 0 -~ 0
wy=| § S
00 - 1w

Solving the vector { A} in Eq. (13) yields ;
{Al= (X IWIHIWIX]D X IW I IW Y} (14)

The biggest disadvantage of WLS, which may
easily be overlooked, is probably the fact that the
theory behind this method is based on the assump-
tion that the weights are known exactly. This is
almost never the case in real applications and es-
timated weights must be used instead. It is clear
that only when the weights are estimated with
high enough precision, will their use significantly
improve the parameter estimation compared to re-
sults obtained if all the data points were weighted
equally i.e. ordinary least squares (OLS) method.
The “goodness” of any least squares estimation
process is measured by the coefficient of corre-
lation parameter which is defined in terms of total
variation and explained variation (Strang, 1986).
The total variation of y is defined as;
N
Ayr=2} (yr—3) (15)
where y, is the measured value of y and ¥ is the
mean value. The total variation consists of two
parts as shown in Fig. 2:

N
(1) the explained variation, Zl(flr—f)z.
=
N
(2) the unexplained variation, Zl(yr—fir)z
“

The terms explained variation and unexplained
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Fig. 2 Explained and unexplained variation

variation are used to denote the fact that the de-
viations ($,—¥) have a definite pattern, while
the deviations (y,—#,) are random and unpre-
dictable.

The correlation coefficient 77 is defined as :

ﬁ (377_37)2
P= | (16)
2 (9r—9)?

The magnitude of y* varies between 0 and 1. A
value of 0 indicates no correlation between de-
pendent and independent variable (s), while a
value of 1 indicates perfect correlation i.e. the
paired values (x;y;) all lie on a straight line.

2.3 Approaches to weight estimation

2.3.1 Replicated data

Optimal results, which minimize the uncertain-
ty in the parameter estimators, are obtained when
the weights, w;, used to estimate the values of the
unknown parameters are inversely proportional
to the variances at each combination of predictor
variable values (Ryan, 1997).

2 (17)

wW; <
[of3

With w;=1/0%, points with a lower variance are
given a greater statistical weight.

If there are replicates in the data, the most
obvious way to estimate the weights is to set the
weight for each data point equal to the reciprocal
of the sample variance obtained from the set of
replicate measurements to which the data point

belongs. Though this method appears attractive, it
requires a very large number of replicates at each
combination of predictor variables. A slightly im-
proved strategy for estimating the weights could
be to find a function that relates the standard
deviation of the response at each combination of
predictor variable values to the predictor vari-
ables themselves.

2.3.2 Estimating weights using residuals

Most commonly, the pattern of nonconstant
variance is that either the standard deviation or
the variance of the residuals is linearly related to
the mean (Helsel and Hirsch, 1992). This occurs
theoretically in most skewed distributions, for in-
stance. Then the absolute residuals essentially are
estimates of standard deviation. So if a plot of
absolute residuals versus fits looks linear, a re-
gression line (response=absolute residuals, pre-
dictor=fits) could be fitted to the pattern. The
predicted values from this regression could be
viewed as smoothed estimates of the standard
deviations of the points. So, the weights in a WLS
regression would be;

1
§:)?

wWi= ( (18}
It is possible to further improve the estimated
parameters by iteration. That is by taking the resi-
duals from the weighted least squares estimation
and fitting a variance function to them. The new
set of weights will be used again to perform WLS
estimation. This iteration procedure could be con-
tinued until the estimated model parameters seem
to stabilize.

2.3.3 Special techniques for estimating
weights

There are many other specialized techniques of
estimating the weighting matrix (or function) de-
pending on the specific application. For example
in filter design, the weighting function should be
such as to assign more importance to stop-bands
than pass-bands. For applications where the last
measurements should be weighted more heavi-
ly than preceding measurements (e.g. neural net-
works), a forgetting factor 8 whose magnitude is
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less than one could be used (Lee and Cheng,
1997). The last equation is multiplied by 8° and
preceding equations are progressively multiplied
by g, p* -

tions. In predictive lossless image coding (Meyer

- BY ; where N is the number of equa-

and Tischer), the weight of an observed pixel
mainly depends on how close the pixel is to the
current pixel.

3. Experimental Device
and Method

In this research only one line feeder was used
in the experiment to deliver a target weight of
50 g. Fig. 3 shows a photograph of the line fee-
der. The vibrating line feeder consists of a base
member below a spring-supported horizontal pan.
The drive is an electric motor with a fixed eccen-
tric shaft. In operation, the drive transmits vibra-
tion through the support springs to the pan base
member. The pan’s vibration continuously throws
the material upward and forward, thus moving the
material in short hops along the conveyor. Any
vibrating linear conveyor’s operation is typically
based on the natural frequency principle. At the
natural frequency, the conveyor will vibrate inde-
finitely with only a small energy input. Once the
drive initiates the conveyor’s vibration, the sup-
porting springs, by alternately storing and releas-
ing most of the required energy, help maintain
constant motion under the conveyed load.

To test whether the method based on least
squares method is more accurate in determining
the time of operation of the line feeders to supply

- -
Fig. 3 A photograph of the line feeder
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the right amount of products compared to the fix-
ed time method, the most appropriate fixed them
was first established by averaging 20 durations
that most accurately delivered 50 g. Then using
this average time, 100 trials were carried out.

To implement the OLS method, the 20 sets of
weight delivered verses time (or part of them de-
pending on the data points preferred), were used
as the starting point. In the WLS case, the weights
were approximated using residuals. The proce-
dure for implementation of WLS method was as
follows :

(1) Fit the regression model by unweighted
least squares (i.e. OLS) and analyze the residuals.

(2) Estimate the variance function by regress-
ing the squares residuals on the appropriate pre-
dictor (s).

(3) Use the fitted values (i.e. the predicted val-
ues) from the estimated variance function to ob-
tain the weights w;.

(4) Estimate the regression coefficients using
these weights.

4. Results and Analysis

Table 1 shows the experimental schemes inves-
tigated in this research. The average time to de-
liver 50 g was found to be 0.761 s. Fig. 4 shows
the results obtained from 100 trials by fixing the
line feeder operation time at 0.761 s. Though the
average value (49.59 g) is very close to the expect-
ed value of 50 g, the dispersion as indicated by the
standard deviation is quite high. This would give
rise to high and unacceptable errors in precision
weighing.

Figure 5 (and corresponding Table 2) shows

Table 1 Line feeder schemes

Scheme Algorithm Number of Data
1 Fixed Time Not Applicable
2 Ordinary LSM 5
3 Ordinary LSM 10
4 WLS 5
5 WLS 10
6 WLS 20
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Fig. 5 Results scheme 2’s 5* experiment

Table 2 Results of statistical analysis for scheme 2
Parameter | 15t [ 27 | 37 | 4%* 5% | Ave.
Max 64.55|66.53162.18 | 60.59 [ 63.24 | 63.42
Min 42.87144.28|40.41 | 38.75|41.89 | 41.64
Ave. 50.62 | 50.72 [ 49.38 | 50.41 | 50.35 | 50.30
o 4.216(4.022 | 4.126 | 3.862 | 3.958 | 4.037

the results of OLS method using 5 previous sets
of operating time and weight of products deliv-
ered i.e. 5 data points. To increase the validity of
the results, each experiment was repeated 5 times
to give a total of 500 trials. The results show an
improvement over the fixed time scheme. The cor-
relation coefficient for the initial set of data was
0.892. This means that the fit of the linear model
to the data is reasonably good and OLS method is
therefore justified. The results were only slightly
improved by increasing the number of data points
to 10 as shown in Fig. 6 and Table 3.

Figure 7 and Table 4 shows the results of
WLS scheme implemented with 5 data points.
The results show a significant reduction of preci-
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Fig. 6 Results scheme 3’s 1°* experiment

Table 3 Results of statistical analysis for scheme 3

Parameter | 15t | 27d | 3rd | 4th 5t | Ave.

Max 59.56 | 64.58 | 57.02 | 59.44 | 62.45 | 60.61

Min 42.67|41.36 | 39.48 [ 43.85 [ 44.87 | 42.45

Ave. 50.16 | 49.76 | 50.25 | 50.42 | 50.36 | 50.19

o 3.744 | 3.782|3.673 | 3.823 | 3.611 | 3.727

Weight (g)

0 10 20 30 40 50 &0 70 80 90 100
Number of times

5th

Fig. 7 Results scheme 4’s experiment

Table 4 Results of statistical analysis for scheme 4

Parameter | 15t | 27 | 374 | 4™ | 5% | Ave
Max 62.45(56.79 ] 56.34 60.26 | 57.80 | 58.73
Min 43.28 [41.25]|44.56 (45.24 | 44.78 | 43.82
Ave. 49.59 | 50.22 [ 49.78 | 50.43 | 50.13 | 50.03

o 3.406 | 3.278 | 3.361 | 3.386 | 3.350 | 3.356

sion errors over the corresponding OLS. The cor-
relation coefficient for the same initial set of data
was 0.924. The increase in the correlation coeffi-
cient (from 0.892 for OLS) indicates an improve-
ment in the degree to which the assumed model
describes the relationship for the set of data ob-
tained.
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Table 5 Results of statistical analysis for scheme 5
Parameter | 15t | 27 | 3 | 4™ | 5t | Aye
Max 55.47156.03 [ 59.67 | 58.91 | 58.18 | 57.65
Min 46.21 [ 44.89 | 41.24 [ 46.23 | 42.34 | 44.18
Ave. 49.73150.19 | 49.83 [ 50.17 | 49.94 | 49.97
o 2.912(2.749 | 2.872 | 2.698 | 2.706 | 2.787
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Fig. 9 Results scheme 6’s 4™ experiment

Table 6 Results of statistical analysis for scheme 6
Parameter | 15t | 27 | 3™ | 4™ | 5t | Aye
Max 61.34 | 62.67|57.28 | 59.67 [ 57.17 | 59.63
Min 45.24 1 44.34|37.34 [ 42.03 | 42.04 | 42.20
Average |49.67|49.54|50.27|49.77 | 50.17 | 49.88
o 3.345|3.674 | 3.563 | 3.495| 3.411 | 3.498

The results were further improved by using
WLS with 10 data points as shown in Fig. 8 and
Table 5. However when the number of data points
was increased from 10 to 20, the precision errors
increased. This is shown in Fig. 9 and Table 6. It
can be seen that the standard deviation for in-
stance, is 3.356 compared to 2.787 obtained for

James N. Keraita and Kyo-Hyoung Kim

the case of WLS with 10 data points. It appears
that going too deeper into history does not im-
prove the results. The best results are those of
scheme 5 i.e. WLS implemented with 10 data
points.

5. Conclusions

In automatic combination weighers the ability
for line feeders to accurately deliver target weights
to the hoppers for the combination operation is
crucial for the overall performance. Determining
the right duration of operating a line feeder to
supply a given amount of product is very chal-
lenging in case of products which are irregular in
volume and/or specific gravity. In this work, de-
termining the duration by analyzing the relation-
ship between previous operating times and the
amount of products delivered using least squares
method was investigated.

Results obtained show that the least squares
implementation reduces precision errors compar-
ed to using a fixed time. The best results were
obtained using a weighted least squares (WLS)
method with 10 data points. The weights were
approximated by using the residuals from a cor-
responding ordinary least squares (OLS) model.
For a target weight of 50 g, all 500 trials lied
between 41.24g and 59.67 g with an average
standard deviation of 2.787. Though the weights
are not the final output from the combination
weigher, they do indicate the accuracy that can be
achieved after the combination operation.
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